Skip to main content
POST
/
search
/
full-text-search
Error
A valid request URL is required to generate request examples
{
  "chunks": [],
  "graph_context": {
    "query_paths": [],
    "chunk_relations": [],
    "chunk_id_to_group_ids": {}
  }
}
Hit the Try it button to try this API now in our playground. It’s the best way to check the full request and response in one place, customize your parameters, and generate ready-to-use code snippets.

Examples

curl --request POST \
  --url https://api.usecortex.ai/search/full-text-search \
  --header 'Authorization: Bearer <token>' \
  --header 'Content-Type: application/json' \
  --data '{
  "query": "John Smith Jake",
  "tenant_id": "tenant_1234",
  "sub_tenant_id": "sub_tenant_4567",
  "max_chunks": 25,
  "operator": "and"
}'

Search Options

The Full Text Search endpoint provides various operators and search capabilities to help you find exactly what you’re looking for in your indexed content.

Boolean Operators

AND Operator

  • Usage: "operator": "and"
  • Behavior: All search terms must be present in the document for it to match
  • Best for: Precise searches where you need all keywords to be present
  • Example: Searching for “machine learning algorithms” with AND will only return documents containing both “machine” AND “learning” AND “algorithms”

OR Operator

  • Usage: "operator": "or"
  • Behavior: At least one search term must be present in the document for it to match
  • Best for: Broad searches to find documents containing any of the specified terms
  • Example: Searching for “python javascript react” with OR will return documents containing any of these programming languages

Search Optimization Tips

For Better Precision

  • Use the AND operator when you need all terms to be present
  • Use specific terminology rather than generic terms

For Broader Results

  • Use the OR operator to find documents with any of the search terms
  • Try synonyms and related terms to expand your search

Response

Returns an array of relevant content chunks from your indexed sources based on the full text search query.
[
  {
    "chunk_uuid": "CortexDoc37e854b429784b148d4fc910812bdc581753761779_20_v1",
    "source_id": "CortexDoc37e854b429784b148d4fc910812bdc581753761779",
    "source_title": "IEEE Transactions LaTeX Templates.pdf",
    "chunk_content": "JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12 Fig. 10: Comparison of models with 4bit precision on Medical QA dataset...",
    "source_url": "ToayuCogoBdxZVoZQ1ft8ZoRzCO2/Hello/Hello/local_source/CortexDoc37e854b429784b148d4fc910812bdc581753761779",
    "source_upload_time": "1753761802.079415",
    "source_collection": [],
    "source_type": "file",
    "layout": "{\"coordinates\": {\"x\": 48.96399688720703, \"y\": 26.49277114868164, \"width\": 514.0717697143555, \"height\": 721.1119651794434}, \"page\": 12}",
    "version": "v1",
    "source_last_updated_time": "",
    "relevancy_score": 0.8363813161849976,
    "rerank_score": null
  },
  {
    "chunk_uuid": "CortexDoc04d73ba38fd54325800a74ec17aed9041753761993_4_v1",
    "source_id": "CortexDoc04d73ba38fd54325800a74ec17aed9041753761993",
    "source_title": "IEEE Transactions LaTeX Templates.pdf",
    "chunk_content": "III. METHODOLOGY Our proposed framework integrates federated learning (FL) with blockchain technology to fine-tune Large Language Mod-",
    "source_url": "ToayuCogoBdxZVoZQ1ft8ZoRzCO2/Hello/Hello/local_source/CortexDoc04d73ba38fd54325800a74ec17aed9041753761993",
    "source_upload_time": "1753762013.1677928",
    "source_collection": [],
    "source_type": "file",
    "layout": "{\"coordinates\": {\"x\": 311.9779968261719, \"y\": 712.3123168945312, \"width\": 251.05746459960938, \"height\": 35.72357177734375}, \"page\": 2}",
    "version": "v1",
    "source_last_updated_time": "",
    "relevancy_score": 0.800000011920929,
    "rerank_score": null
  }
]
Note: This API performs full text search with configurable operators for precise text matching. For conversational Q&A with AI-generated responses, use the /search/qna API instead.

Operator Parameter

The operator parameter controls how the search terms are combined:
  • OR operator (default): At least one token must be present in the document
  • AND operator: All tokens must be present in the document

Max Chunks Parameter

The max_chunks parameter controls the maximum number of results returned:
  • Must be between 1 and 1001
  • Defaults to the system limit if not specified

Use Cases

  • Precise keyword matching: Use AND operator when you need all search terms to be present
  • Broad search: Use OR operator to find documents containing any of the search terms
  • Exact phrase matching: Ideal for finding specific terminology or phrases in your documents

Error Responses

All endpoints return consistent error responses following the standard format. For detailed error information, see our Error Responses documentation.

Authorizations

Authorization
string
header
required

Bearer authentication header of the form Bearer <token>, where <token> is your auth token.

Body

application/json
tenant_id
string
required

Unique identifier for the tenant/organization

Example:

"tenant_1234"

query
string
required

Search terms to find in your content

Example:

"John Smith Jake"

sub_tenant_id
string | null

Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.

Example:

"sub_tenant_4567"

operator
enum<string>
default:or

How to combine search terms (OR or AND)

Available options:
or,
and
Example:

"and"

max_chunks
integer
default:10

Maximum number of results to return

Example:

1

search_mode
enum<string>
default:sources

What to search: 'sources' for documents or 'memories' for user memories

Available options:
sources,
memories

Response

Successful Response

Result of a hybrid search retrieval operation.

chunks
VectorStoreChunk · object[]
Example:
[]
graph_context
GraphContext · object

Graph context containing query-based paths and chunk-based relation paths.